View Full Version : Magnetic portals around the earth

30th June 2012, 10:22 PM

3rd July 2012, 01:42 AM
That reminded me of something I had read in the past. I found my note, here are a few paragraphs from the NASA site.
In other news there are rumours that CERN is about to press release on the hunt for Higgs!

"The discoveries began in March less than a month after the five THEMIS satellites had been activated. "On March 23, 2007, a substorm erupted over Alaska and Canada producing vivid auroras for more than two hours." A network of ground cameras organized to support THEMIS photographed the display from below while the satellites measured particles and fields from above.

Right: Auroras over Alaska on March 23-24, 2007. Photo credit: Daryl Pederson. [More]

Right away the substorm surprised investigators: "The auroras surged westward twice as fast as anyone thought possible, crossing 15 degrees of longitude in less than one minute," says Angelopoulos. The storm had traversed an entire polar time zone in 60 seconds flat!

Also, "the display was surprisingly bursty." Photographs taken by ground cameras and NASA's Polar satellite (also supporting the THEMIS mission) revealed a series of staccato outbursts each lasting 10 minutes or so. "Some of the bursts died out while others reinforced each other and went on to become major events."

Scientists have been tracking and studying substorms for more than a century, yet these phenomena remained mostly unknown until THEMIS went into action.

Even more impressive was the substorm's power. Angelopoulos estimates the total energy of the two-hour event at five hundred thousand billion (5 x 1014) Joules. That's approximately equivalent to the energy of a magnitude 5.5 earthquake.

Where does all that energy come from? THEMIS may have found an answer:

"The satellites have found evidence for magnetic ropes connecting Earth's upper atmosphere directly to the Sun," says Dave Sibeck, project scientist for the mission at the Goddard Space Flight Center. "We believe that solar wind particles flow in along these ropes, providing energy for geomagnetic storms and auroras."

A "magnetic rope" is a twisted bundle of magnetic fields organized much like the twisted hemp of a mariner's rope. Spacecraft have detected hints of these ropes before, but a single spacecraft is insufficient to map their 3D structure. THEMIS's five satellites were able to perform the feat.

"THEMIS encountered its first magnetic rope on May 20, 2007," says Sibeck. "It was very large, about as wide as Earth, and located approximately 40,000 miles above Earth's surface in a region called the magnetopause." The magnetopause is where the solar wind and Earth's magnetic field meet and push against one another like sumo wrestlers locked in combat. There, the rope formed and unraveled in just a few minutes, providing a brief but significant conduit for solar wind energy. Other ropes quickly followed: "They seem to occur all the time," says Sibeck."


3rd July 2012, 02:47 AM
That is sooo cool. Kinda reminded me of an umbilical cord.
:cool: :thumbsup:

12th July 2012, 01:39 PM
More umbilical cords, this time on a galactic scale. :)

"The map of the known universe shows that most galaxies are organized into clusters, but some galaxies are situated along filaments that connect the clusters. Cosmologists have theorized that dark matter undergirds those filaments, which serve as highways of sorts, guiding galaxies toward the gravitational pull of the massive clusters. Dark matter's contribution had been predicted with computer simulations, and its shape had been roughed out based on the distribution of the galaxies. But no one had directly detected it until now.

"We found the dark matter filaments. For the first time, we can see them," said Jörg Dietrich, a physics research fellow in the University of Michigan College of Literature, Science and the Arts. Dietrich is first author of a paper on the findings published online in Nature and to appear in the July 12 print edition.

Dark matter, whose composition is still a mystery, doesn't emit or absorb light, so astronomers can't see it directly with telescopes. They deduce that it exists based on how its gravity affects visible matter. Scientists estimate that dark matter makes up more than 80 percent of the universe. To "see" the dark matter component of the filament that connects the clusters Abell 222 and 223, Dietrich and his colleagues took advantage of a phenomenon called gravitational lensing.

The gravity of massive objects such as galaxy clusters acts as a lens to bend and distort the light from more distant objects as it passes. Dietrich's team observed tens of thousands of galaxies beyond the supercluster. They were able to determine the extent to which the supercluster distorted galaxies, and with that information, they could plot the gravitational field and the mass of the Abell 222 and 223 clusters. Seeing this for the first time was "exhilarating," Dietrich said.

"It looks like there's a bridge that shows that there is additional mass beyond what the clusters contain," he said. "The clusters alone cannot explain this additional mass."

Scientists before Dietrich assumed that the gravitational lensing signal would not be strong enough to give away dark matter's configuration. But Dietrich and his colleagues focused on a peculiar cluster system whose axis is oriented toward Earth, so that the lensing effects could be magnified.

"This result is a verification that for many years was thought to be impossible," Dietrich said.

The team also found a spike in X-ray emissions along the filament, due to an excess of hot, ionized ordinary matter being pulled by gravity toward the massive filament, but they estimate that 90 percent or more of the filament's mass is dark matter."